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Abstract. The relativistic Schr̈odinger theory (RST) is applied to a general 2-particle system with
electromagnetic interactions. The emphasis of the investigation lies on the exchange and overlap
effects in connection with the development of adequate single-particle and 2-particle concepts. It is
possible to eliminate the 2-particle quantities and to formulate the 2-particle theory exclusively in
terms of single-particle quantities but then there arises a new unobservable field degree of freedom:
‘ renormalization’.

1. Introduction

The most intriguing features of the quantum world become evident when considering many-
particle systems [1]. As is well known, these systems obey a rather different logic than is
encountered in classical physics, but this point still remains the subject of violent controversies.
(For a more philosophical survey of the relationship between the quantum and classical
approaches see [2, 3].) Naturally, the treatment of many-particle systems requires the
development of a framework embracing both single-particle and many-particle concepts.
The many-particle effects occurring in a physical system are thought to be most effectively
accounted for by the conventional quantum field theory (e.g. [4]). However, the latter theory
is of essentiallystatistical character and therefore must live over some configuration space
characterizing the kinematical properties of the system. But on the other hand, one could also
think of a true space-time description of the quantum phenomena which would then necessarily
be of a certainfluid-dynamiccharacter. It seems that this latter line of thinking has not
received much attention in comparison with the statistical approach, because the configuration-
space description appears to be ideally adapted to those typically quantum effects as, e.g., the
exchange phenomena which are kinematically based upon the symmetry under permutation of
the particles.

However, it has recently been shown in some papers about the relativistic Schrödinger
theory (RST) [5,6] that the notorious exchange effects of many-particle systems can, generally,
also be treated in a quantum theory of fluid-dynamic character. Here, the discreteness of the
particle numberNp is no problem because it agrees (roughly) with the number of dimensions
of the typical fibre of the vector bundle to be applied. Thus one obtains a fluid-dynamic
theory over the real space-time with an arbitrary discrete particle numberNp. Clearly, such
a newcomer among the possible quantum theories cannot cope from the very beginning with
the longstanding and well-established forms of quantum theory (i.e. the conventional quantum
field theory) which have been developed by generations of physicists during the past decades.
But what one must expect from a new theory is that, in its initial stage, it stands up to a certain
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number of elementary tests, which principally aim at its mathematical consistency and logical
coherence. The present RST seems to have passed some of those tests with sufficient success:
integrability conditions for the existence of wavefunctions [5], identities and conservation
laws [7], topological currents [8], mixtures and pure states [9, 10] and some cosmological
applications [11,12]. Besides these more mathematical aspects, the RST also seems to provide
a new viewpoint on the ‘non-local’ effects in quantum theory (particle–wave duality [13,14]).

Therefore, it may be time now to take a closer look at themany-particlesystems from
the viewpoint of RST. This means that we have to study the overlap and exchange effects
of RST which also occur in a similar way in standard theory whenever the wavefunctions
of several particles are overlapping. Surprisingly enough, this field of problems then turns
out to be intimately connected with another phenomenon whose analogue in conventional
quantum theory is called‘renormalization’. This means that in RST there also emerge a
number of unobservable fields (‘amplitude fields’) which acquire their physical meaning only
by multiplying them with a‘renormalization’ factor. Through this construction, the RST is
revealed as a competitor of the conventional form of many-particle systems. Consequently, it
is of interest to see what new aspects are brought into this field by the new approach.

1.1. Probabilistic approach

Here, let us first reiterate the general belief that the ultimate theory must be the quantum field
theory, e.g. QED and QCD; and that relativistic quantum mechanics (as a coupled system of
Klein–Gordon and/or Dirac equations) can, at best, be considered as an approximation: see,
e.g., [15–17]. As a natural consequence of this belief, one can proceed along two different
routes in order to build up relativistic quantum mechanics for many-particle systems: (i) either
one achieves this by applying certain approximations to quantum field theory [15, 18, 19], or
(ii) one intuitively tries to generalize the well known 1-particle case of relativistic quantum
mechanics to the many-particle situation [20–22]. Clearly, a nice consistency check for both
routes would consist in the demonstration that they actually meet together at the same relativistic
quantum mechanics; and indeed this has been achieved within the framework of the so-
called‘manifestly covariant constraint formalism’for Hamiltonian relativistic mechanics [23].
Nevertheless, there remain some open questions despite this relative success. For instance, the
many-particle interaction potential occurring in the coupled set of relativistic wave equations
is obtained by perturbation expansion of the Bethe–Salpeter kernel and thus always leads to
instantaneous (albeit non-local) interactions. Despite this dubious instantaneity, the potentials
are used to compute the mass spectra of mesons as quark–antiquark bound systems: see,
e.g., [24]. But what would a non-instantaneous many-particle interaction potential look like?
Observe here that a consistent decomposition of such anN -body potential into 2-particle
contributions does not seem to be possible [16].

Moreover, there also remains a more conceptual difficulty which is due to the fact that both
routes (i) and (ii) to relativistic quantum mechanics rely upon its probabilistic interpretation.
Such an approach must necessarily interpret the physical state as a probability amplitude
over the system’s configuration space (i.e. space-time). As a consequence, the physical
state for anN -particle system depends upon the 4N space-time coordinates of the particles
ψ = ψ(x1µ . . . ψNµ) and therefore depends upon theN time coordinatest1 . . . tN . However,
the physical meaning of these‘observation times’[23] ta (a = 1 . . . N) is obscure and is
generally considered as a difficulty (if not deficiency) of the theory [16].
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1.2. Fluid-dynamic approach

In this situation, the RST provides us with a completely alternative view upon the relativistic
systems of fixed particle numberN . The point of departure here is thefluid-dynamic
interpretation of the 1-particle wave equations (as they are applied for the description of the
Bose–Einstein condensates). As a consequence, the many-particle systems are not described
by means of the tensor products of 1-particle states but rather by means of the Whitney
sum of the single-particle bundles. Correspondingly the observable quantities of the theory
are the‘physical densities’over the real space-time and the difficulty with the probabilistic
‘observation times’ is avoided. Thus, in contrast to the probabilistic approach, the fluid-
dynamic approach is truly relativistic (see the 1-particle mass eigenvalue problem in section 9)
and therefore can be generalized to also include spin and gravitation within the framework of
general relativity [10–12]. Furthermore, the investigation of electromagnetic many-particle
interactions [6, 25] demonstrates their non-instantaneous nature. This implies that there can
occur at most 3-body forces, namely when the‘overlap current’ due to any two particles
generates a gauge potentialAµ which itself then acts upon the wavefunction of a third particle
via minimal coupling. In this way the ambiguities of theN -body forces of the conventional
quantum theory mentioned above are avoided. This is due to the fact that the Whitneysum
construction is used for the fluid-dynamic description of many-particle systems (in place of
using the tensorproductof Hilbert spaces in the conventional probabilistic approach).

In this paper we restrict ourselves to the study of thegeneralproperties of 2-particle
systems and the results are elaborated in the following arrangement.

First we present the generalN -particle case in RST in order to introduce the basic concepts
(section 2). Next, the observables for the 2-particle system are introduced (section 3). Then we
recognize the emergence of anSO(2) subbundle of the proper gauge groupU(1)×U(1) for two
particles. This construction makes sense because the typical frequency in theSO(2) bundle is
the difference of the two frequencies of theU(1) bundles and thus is related to the transition
effects (section 4). Afterwards the Hamiltonian dynamics is discussed which gives us the
opportunity to introduce the exchange fields as the off-diagonal elements of the Hamiltonian
Hµ. On closer inspection of these 2-particle fields, they are revealed to be the product of
certain 1-particle fields referring todifferent particles. During this procedure there emerge
the ‘amplitude fields’which are considered to be unphysical because they are fixed only up to
some arbitrary scaling factor (section 5). Since this scaling factor can be changed arbitrarily,
the theory acquires an additional unobservable field degree of freedom (‘renormalization’).

However, the amplitude fields are ‘almost’ of physical character in the sense that when
multiplied by some further unobservable fields (the‘renormalization factors’) they actually
coincide with the physical densities which are the true observables of theory. Thus, in place
of dealing with the physical densities, one can also deal with the unobservable amplitude
fields and renormalization factors whose dynamical equations directly follow from those of
the physical densities (sections 6 and 7).

The exchange and overlap effects of the theory emerge by considering the conserved
currents which consist of a single-particle contribution and an overlap part (section 7). By a
careful examination of the density dynamics, one recognizes that the exchange fields always
occur in certain combinations of their longitudinal and transverse parts. These combinations
give rise to the introduction of two new 2-particle fields: theexchange field strengthand
the anholonomy tensor fieldwhich both are invariant with respect to renormalization and
therefore must be considered as physical objects. However, in section 7 we show that these
latter 2-particle fields can also be factorized into products of different 1-particle fields so
that the whole theory can actually be reformulated by means of 1-particle objects which,
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however, are dynamically coupled. The corresponding equations of motion exhibit the correct
covariant transformation behaviour with respect to renormalization (section 8). Thus, it
becomes evident that the price for dealing only with regular 1-particle objects is the emergence
of renormalization. The latter is measured by the anholonomy tensor field so that for the
holonomic case the renormalization degree of freedom must disappear.

In section 9, the energy (i.e. mass) eigenvalue problem for a single particle under the action
of the Coulomb force is discussed in detail. This demonstrates the specific way in which the
non-relativistic energyproblem is generalized by RST to therelativistic massproblem.

2. GeneralN -particle theory

In order to make it clear that RST actually is a rather general framework applying to any
particle numberNp, we first want to present a brief sketch of this general structure. After
this has been done, one can easily specialize the general formulae to some prescribed particle
number, especially to the 2-particle systems (Np = 2) considered in this paper.

As in most of the modern theories for elementary particles (see e.g. [26]), the RST
also relies upon the usual dualistic picture of the elementary physical process: matter
and interaction. Consequently, the whole system under consideration will consist of two
dynamically coupled subsystems, namely the matter subsystem and the subsystem of the
interactions. Clearly, any one of the two subsystems must be described in terms of its own
variables, i.e.wavefunctionψ (or intensity matrixI) for the material subsystem andgauge
potentialAµ as carrier of the interactions. Let us first consider the material subsystem.

The wavefunctionψ = {ψA,A = 1 . . . Nf } is understood here to be anNf -component
section of some complex vector bundle over pseudo-Riemannian space-time as the base
manifold. According to the type of interaction (i.e. choice of the gauge group), theNf

components of the sectionψ(x) group into certain subsets (‘gauge multiplets’) which are
acted upon by the various irreducible representations of the gauge algebra. The number
Np of multiplets, or equivalently ‘modes’ of the matter field, is the‘particle number’Np.
Especially, for the electromagnetic interactions the gauge group is theNf -fold product
U(1) × U(1) × · · · × U(1) of the one-dimensional Abelian groupU(1) and therefore the
numberNp of particles (i.e. matter modes) coincides here with the fibre dimensionNf .

Since RST is a fluid-dynamic approach to the quantum phenomena, the properobservable
quantities of the theory are thephysical densities1i(x) (i = 1 . . . N2

f ). They are generated by
the wavefunctionψ (or intensity matrixI, resp.) together with some Hermitian operator (δi ,
say) acting over the typical fibre of the vector bundle:

1i(x) = ψ̄(x) · δi · ψ(x) (2.1a)

1i(x) = tr(I(x) · δi). (2.1b)

Recall that for a pure state (i.e.I = ψ ⊗ ψ̄), expressions (2.1a) and (2.1b) coincide, but
otherwise (2.1b) is the more general one. The set of ‘observables’{δi} may be grouped
into representation spaces of the gauge group{S} so that the corresponding transformation
behaviour of the wavefunction (or intensity matrix):

ψ ′ = S−1 · ψ (2.2a)

I ′ = S−1 · I · S (2.2b)

is also transferred to the densities, i.e.

1′i (x) = ψ̄(x) · S · δi · S−1 · ψ(x)
= Sj i1j (x) (2.3)

(S · δi · S−1 := Sj iδj ).
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Obviously, the group{Sj i} establishes some homomorphic map of the original gauge group
(S) and the subset of‘intrinsic densities’ {1i} is the corresponding representation space.
According to their very construction, the intrinsic densities may be found to be gauge dependent
and in this case they cannot be equipped with a direct physical meaning. However, as is
demonstrated below, the intrinsic densities may be combined with other gauge objects to form
gauge invariants (‘extrinsic densities’) and these then can be considered as physical observables
(e.g. currentjµ(x) or energy–momentum densityTµν(x)).

An interesting point regarding the physical densities is the fact that theNf -particle bundle
is the Whitney sum of the corresponding single-particle bundles. This implies that the set
of observablesδi can be subdivided into two subsets, namely those which act exclusively
within some single-particle subspace of the typical fibreCNf and those which mediate
between these subspaces. Let the projector onto the single-particle subspaces be denoted by
Pa(x) (a = 1 . . . Np), then the single-particle observables(a)δi are obviously of the following
form:

(a)δi = Pa · δi · Pa (2.4)

and the corresponding single-particle densities(a)1i are then given in general terms by
(a)1i(x) = tr(I(x) · (a)δi). (2.5)

For instance, the simplest observable is, of course, the unity operator1

1=
Nf∑
a=1

Pa. (2.6)

Thus we can always define the single-particle densitiesρa(x) through

ρa(x) = tr(I · Pa). (2.7)

Of course, the remainder of observables (not being contained in the linear vector space spanned
byPa) must then describe theexchange effectsoccurring in our many-particle system, studied
below forNf = 2 particles.

A further important question is related to the particle numberNp. If it is true that the
proper observable objects of the theory are the extrinsic densities, how then do they display the
particle numberNp of the physical system? The answer comes from the charge conservation
which is usually expressed in differential form as

∇µjµ ≡ 0. (2.8)

Its integral form leads to the concept of a conserved chargee

e =
∫
S

jµ d3Sµ (2.9)

where the integral extends over a three-dimensional hypersurfaceS (closed or open). However,
for Np particles one must demand the existence ofNp gauge-invariant conservation laws

∇µjaµ ≡ 0 (a = 1 . . . Np) (2.10)

with the corresponding conserved charges

ea =
∫
S

jaµ d3Sµ. (2.11)

Obviously, the currentsjaµ present a further example for the subtle relationship between
single-particle objects and the notorious exchange (or overlap) quantities. The point here is that
one expects the numerical value of the chargesea (2.11) to be independent of the particle number
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Np; but on the other hand the associated currentsjaµ (2.10) cannot be considered as strict single-
particle objects because they must also contain some exchange (or overlap) constituents with
respect to the other particles in order to be able, e.g., to bring forth the notorious exchange
energies of atomic physics [25]. Subsequently, we will demonstrate how this problem may be
solved in RST by associating the current densitiesjaµ and the corresponding velocity operators
vaµ such that

jaµ = tr(I · vaµ) (2.12a)

(or : jaµ = ψ̄ · vaµ · ψ, resp.). (2.12b)

Through this construction the question of overlap effects for the densities is shifted to the
exchange constituents of the operators. The problem of determining the velocity operatorsvaµ
has already been solved in a preceding paper [6] and it is sufficient here to merely reproduce
the result:

vaµ = 1

2Mc2
(Pa ·Hµ + H̄µ · Pa). (2.12c)

But first we have to face the problem of the right dynamics. Clearly, if the currents
jaµ (2.12a)–(2.12c) are required to obey the conservation laws (2.10), the intensity matrix
I (or wavefunctionψ , resp.) must obey certain dynamical equations which admit just those
conservation laws. At this point, the gauge potentialAµ comes into play because the dynamics
must be based upon the very successfulprinciple of minimal couplingwhich governs all the
successful modern theories of elementary particles [26]. This means that the derivatives of the
wavefunctionψ (or I, resp.) should enter the equations of motion for matter in the following
gauge-covariant form:

Dµψ = ∂µψ +Aµ · ψ (2.13a)

DµI = ∂µI + [Aµ, I]. (2.13b)

This requirement is actually realized for RST because the central equation of motion for the
wavefunctionψ here is the relativistic Schrödinger equation (RSE)

ih̄cDµψ = Hµ · ψ (2.14)

or, respectively, the relativistic von-Neumann equation for the intensity matrixI

DµI = i

h̄c
(I · H̄µ −Hµ · I). (2.15)

It is important that theHamiltonian 1-formHµ is not Hermitian (i.e.H̄µ 6= Hµ). Moreover,
Hµ is not such an absolute object of the theory as Schrödinger’s Hamiltonian operator̂H for
the non-relativistic approach, but ratherHµ obeys a certain dynamical system. The first part
of this is theconservation equation

DµHµ − i

h̄c
Hµ ·Hµ = −ih̄c

(
Mc

h̄

)2

· 1 (2.16)

which guarantees the validity of the conservation laws (2.10) (and also the energy–momentum
conservation, see [7]).

The second equation for the HamiltonianHµ is theintegrability condition

DµHν − DνHµ +
i

h̄c
[Hµ,Hν ] = ih̄cFµν (2.17)

whereFµν is thefield strengthdue to the gauge potentialAµ
Fµν = ∇µAν −∇νAµ + [Aµ,Aν ]. (2.18)
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(The field strengthFµν is the bundle curvature and therefore takes its values in the holonomy
(sub)algebra of the gauge algebra

Fµν = Faµντ a (2.19)

whereτ a are the generators of the (sub)algebra.) The significance of the second equation for
Hµ (2.17) lies in the fact that it ensures the automatical validity of the bundle identities, e.g.
for ψ

(DµDν − DνDµ)ψ = Fµν · ψ (2.20)

or similarly forI
(DµDν − DνDµ)I = [Fµν, I]. (2.21)

In mathematical terms, the field strengthFµν plays the part of bundle curvature and it is required
to leave invariant the single-particle subspaces of the typical vector fibre [27]

(DµDν − DνDµ)Pa ≡ [Fµν,Pa]
!= 0 (2.22)

(a = 1 . . . Np).

Thus, the gauge interactions among theNp particles work along the usual principles of gauge
theories: the wavefunctionψa of theath particle builds up the currentjaµ which acts as the
source for the curvature [6]

DµFµν = 4παJν (2.23)

(Jν = jaντ a). (2.24)

This in turn acts back on the particles via the Lorentz force densityfν [6]

fν = −h̄c tr(Fµν · J µ) (2.25)

but the single-particle subspaces are not mixed by the curvature operatorFµν , cf (2.22). As a
consequence, the usual gauge interactions can only produceCoulomb interactionsamong the
particles but notexchange interactions[25]. The latter type of interactions can be explained
in RST via the off-diagonal elements of the HamiltonianHµ which mediate between the
different single-particle subspaces. IfHµ is diagonal in this sense, the componentsψA of
the vector sectionψ (belonging to different single-particle subspaces) are disentangled and
one deals withindependent particles(corresponding to the ordinary product states in the
conventional quantum theory). But if the off-diagonal elements ofHµ are present in a non-
trivial way, the different single-particle subspaces become coupled as shown by the RSE (2.14)
(→ ‘entanglement’[27]). Clearly it is one of the most interesting questions in RST, whether
and in what way the exchange fields can decay to zero, i.e. the question of the transition from
entanglement to independent particles. Curiously enough, it turns out that these exchange
(i.e. off-diagonal) components ofHµ can be factorized for a 2-particle system into strictly
single-particle variables. The emergence of this possibility of factorization is one of the main
concerns of our subsequent investigations because it is closely connected to the phenomenon
of renormalization.

Finally, let us point out that within the present framework of RST the gauge interactions
between matter are described in a somewhat different way in comparison with the conventional
theory. In the latter approach, there is one single field strengthFµν which is the curvature of a
U(1) bundle and is generated by the total electromagnetic current of the particles according to
the Maxwell equations. However, in RST, the field strengthFµν is decomposed with respect
to the basis{τ a} of the product gauge groupU(1) × U(1) × · · · × U(1). Consequently the
gauge potentialAµ is also built up by a set ofN individual gauge potentialsAaµ (a = 1 . . . N)

Aµ = Aaµτa (2.26)
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which are associated to the individual particles (resp. matter modes). The idea that, e.g.,
two particles require two gauge potentials for their description is not new but has already
been put forward in connection with the problems emerging in a theory for the magnetic
monopoles (see [28] and references therein). This concept of a‘multi-potential’ may appear
as an ingenious solution to the monopole problems but it is an essential ingredient of the RST
for all many-particle systems.

With these preparations, we can now go into the details of the description of general 2-
particle systems where the emphasis is concentrated upon the properties of the matter subsystem
(the peculiarities of the gauge-field subsystem have been studied in a preceding paper [6]).

3. Observables for two particles

As a demonstration of the concepts introduced so far, we study now the scalar 2-particle
systems with electromagnetic interactions. The typical vector fibre is the two-dimensional
complex spaceC2 (i.e.Nf = 2) and thus the 2-component wavefunctionψ = {ψa, a = 1, 2}
is to be considered as a section of the corresponding vector bundle. There areN2

f = 4
independent Hermitian operators acting over the typical fibreC2, and any other operator such
as the HamiltonianHµ or energy–momentum operatorTµν may be expanded with respect to
these four basic operators. Therefore, we first have to specify the adequate operator basis.

As the first two operators we have already chosen the two projectorsPa (a = 1, 2)
which may now be complemented by two Hermitian‘permutators’5a (= gab5b) obeying
the following relations:

51 ·51 = 52 ·52 = 1 (3.1a)

51 ·52 = −52 ·51 = i(P1− P2) (3.1b)

51 · P2 = iP1 ·52 = P1 ·51 = i52 · P2 = 1
2(51 + i52) (3.1c)

P2 ·51 = −i52 · P1 = −iP2 ·52 = 51 · P1 = 1
2(51− i52) (3.1d)

(→ tr5a = tr(Pa ·5b) = 0).

From here the meaning of the permutators becomes immediately obvious through the following
implications:

51 · P2 ·51 = 52 · P2 ·52 = P1 (3.2a)

51 · P1 ·51 = 52 · P1 ·52 = P2 (3.2b)

which reveal the ‘permutative’ properties of the operators5a (a = 1, 2).
After the operator basis has been completed, all the observables may be decomposed with

respect to this basis. For instance, the intensity matrixI reads

I = ρaPa + 1
2 sa5

a (summation of double indices) (3.3)

so that the densities{ρa, sa} may be recovered fromI as

ρa = tr(I · Pa) (3.4a)

sa = tr(I ·5a). (3.4b)

It is well known that the Fierz identity

I2 = ρI (ρ := tr I ≡ ρ1 + ρ2) (3.5)

is the necessary and sufficient condition for the existence of a wavefunctionψ (i.e.I → ψ⊗ψ̄).
This identity can now be reformulated conveniently in terms of the densities{ρa, sa} as

ρ1 · ρ2 = 1
4s
asa := 1

4s
2 (sa = sŝa, ŝa ŝa = 1). (3.6)
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Observe also that thesingle-particle densitiesρa (3.4a) are attributed to the previously
introduced projectorsPa (2.6) whereas theoverlap densitiessa (3.4b) are connected with
the permutators5a. Thus one may guess that the overlap densitiessa and permutators5a

will be responsible for the notorious exchange and overlap effects which are co-operatively
produced bybothcomponentsψa (a = 1, 2) of the wavefunction. Indeed, in agreement with
the single-particle densities (3.4a), putting

ψ1 = a1eiα1 (3.7a)

ψ2 = a2eiα2 (3.7b)

(→ ρ1 = a2
1, ρ2 = a2

2)

one finds for the overlap densities (3.4b) that

s1 = −2a1a2 cos(α1− α2) (3.8a)

s2 = 2a1a2 sin(α1− α2) (3.8b)

which concurs exactly with the Fierz identity (3.6) and, furthermore, gives a demonstration of
how the overlap densities are built up by cooperation of both wavefunctionsψa. Evidently the
overlap densities vanish wherever the wavefunctions do not overlap.

Suppose now, further, that the single-particle phasesαa change as usual according to the
corresponding energy eigenvaluesEa

αa = −Eat
h̄
. (3.9)

Then the overlap densitiessa (3.8a), (3.8b) must rotate with the frequencyω due to the
difference of the eigenvaluesEa

s1 = −s cosωEt (3.10a)

s2 = s sinωEt (3.10b)(
ωE = E2 − E1

h̄

)
.

Clearly, these rapid oscillations would not be observed in a stationary system (e.g. atom)
and consequently we have to consider them as a gauge artifact. But this implies that our
U(1)×U(1) bundle is accompanied by someSO(2) bundle which must inherit its connection
from the originalU(1)× U(1) connection in some definite way.

4. SO(2) bundle

Consider now someU(2) gauge transformationS which simultaneously is an element of the
holonomy groupU(1)× U(1):

S = exp(φaτ
a) (τ a := −iPa) (4.1)

parametrized by the group parametersφa (a = 1, 2). Such a change of gauge transforms any
operator, e.g. the intensity matrixI, according to the following rule:

I → I ′ = S−1 · I · S. (4.2)

But, according to the Abelian character of this transformation, the projectorsPa are left
invariant byS and so, therefore, are the single-particle densitiesρa (3.4a). However, the
two permutators5a induce some homomorphic map of the holonomy groupU(1) × U(1)
onto the rotation groupSO(2), i.e. we find by explicit computation by means of the operator
algebra (3.1a)–(3.1d) that

S−1 ·5a · S = Sab5b (4.3)
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with theSO(2) elementS being given by

Sab =
(

cos(φ1− φ2) − sin(φ1− φ2)

sin(φ1− φ2) cos(φ1− φ2)

)
. (4.4)

The overlap densitiessa are, therefore, not gauge invariant as the single-particle densitiesρa
but transform according to

s ′b = saSab (4.5)

with respect to aU(1)× U(1) gauge transformation. Of course the ‘length’s of the 2-vector
sa, occurring in the Fierz identity (3.6), remains invariant. But the rapid oscillations (3.10a),
(3.10b) can now obviously begauged offby simply choosing for the gauge parameters

φ1− φ2 = −ωEt (4.6)

as can always be expected for gauge artifacts.
For the sake of convenience, theSO(2) gauge objects may be collected into a separate

SO(2) subbundle whose connection(ω) is then easily deduced from the originalAµ in the
following way: since the permutators5a have been revealed as a gauge doublet, we can put
for their covariant derivative

Dµ5a = 5b · ωbaµ (Dµ5a ≡ ∂µ5a + [Aµ,5a]) (4.7)

with theSO(2) connectionω being given by

ωbaµ = −εba · ωµ. (4.8)

Here,εab (= −εba) is the permutation tensor in two dimensions (SO(2) generator) andωµ is
an ordinary 1-form. (Hint: check the consistency of the differential law (4.7) with the operator
algebra (3.1a)–(3.1d) by explicit differentiation.) But now observe that the choice of such a
permutator doublet5a is not unique. In fact, any other rotated choice5′a

5′a =
◦
S
a
b ·5b (4.9)

with
◦
S an arbitrarySO(2) element of the kind (4.4) would leave form invariant all the

commutatorsof the set [Pa,5b] and [5a,5b] and therefore would mediate the same bundle
homomorphismU(1)×U(1)→ SO(2). With respect to the rotated doublet5′a (4.9) however,
one must apply a modifiedSO(2) connectionω′ in (4.7):

Dµ5′a = 5′b · ω′baµ (4.10)

where both connectionsω andω′ are related through theSO(2) element
◦
S as usual:

ω′baµ =
◦
S
b
c · ωcdµ · (

◦
S
−1)da +

◦
S
b
c · ∂µ(

◦
S
−1)ca. (4.11)

Clearly the new connectionω′ is also of the form (4.8), i.e.

ω′baµ = −εba · ω′µ (4.12)

where theR1-valued 1-formωµ has been changed to

ω′µ = ωµ + ∂µζ (4.13)

provided theSO(2) element
◦
S is parametrized by the group parameterζ in the usual way

◦
S
a
b = cosζ · δab + sinζ · εab. (4.14)

But the point, with such a different choice of theSO(2) gauge objects, is that it does not
now have any bearing upon the physical content of the formalism. Recall that the physics in
fibre bundle theory is always determined by the bundle curvatureΩ:

�abµν = ∇µωabν −∇νωabµ + ωacµω
c
bν − ωacνωcbµ. (4.15)
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Its general form is easily computed as

�abµν = −εabfµν (4.16)

with theSO(2) field strengthfµν being nothing else than the curl of the 1-formωµ (4.8)

fµν = ∇µων −∇νωµ. (4.17)

Consequently, the modified choice of a permutator doublet (4.9) would change only the
connection coefficientωµ to ω′µ (4.13) but would leave invariant the associated field strength
fµν (4.17). It is for this reason thatfµν can be thought to be equipped with an objective
physical meaning (see below for the implications). Observe also, that a different choice of
the permutator doublet{5a} has nothing to do with a change of theU(1) × U(1) gauge,
although both transformation laws (4.3) and (4.9) look quite similar. In fact, any change of
theU(1) × U(1) gauge would not only transform the permutator doublet according to the
homogeneous law (4.3) but would simultaneously transform theU(1)×U(1) connectionAµ
in the usual inhomogeneous manner

A′µ = S−1 ·Aµ · S + S−1 · ∂µS. (4.18a)

As a consequence, the derivatives of the permutators are also transformed homogeneously

D′µ5′a = S−1 · (Dµ5a) · S (4.18b)

and if this is applied to equation (4.7) we find theSO(2) connectionω (4.8) remaining invariant.
But despite this relative independency of both kinds of gauge transformations, there must

exist some relationship between both curvaturesF (2.18) andΩ (4.16). This readily becomes
clear by reconsidering the following bundle identity [7]:

(DµDν − DνDµ)5a ≡ [Fµν,5a]. (4.19)

Introducing here the decomposition (2.19) of the curvatureFµν with respect to the holonomy
generatorsτ a yields on the right-hand side

[Fµν,5a] = −5bε
b
afµν (fµν := F1µν − F2µν). (4.20)

Alternatively, one can differentiate once more equation (4.7) and then one finds for the left-hand
side of equation (4.19)

(DµDν − DνDµ)5a = 5b�
b
aµν = −5bε

b
afµν (4.21)

where the curvatureΩ has already been substituted from equation (4.16). Thus, the
identity (4.19) establishes the following link between both curvature 2-formsfµν (4.17) and
Fµν (2.18):

fµν = 1
2εab tr(5b · Fµν ·5a). (4.22)

From here it immediately becomes obvious that the 2-formfµν is actually theSO(2) bundle
curvature and obeys the Bianchi identity

∇µfνλ +∇νfλµ +∇λfµν = 0 (4.23)

as required.

5. Hamiltonian dynamics

Now that the geometry of the 2-particle bundle and itsSO(2) reduction has been determined
in detail, we can turn to study the peculiar features of theexchange fields. These objects are
connected with the permutators5a and therefore are responsible for the physically relevant
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exchange effects. Indeed, decomposing the general (non-Hermitian!) HamiltonianHµ with
respect to the operator basisPa,5b yields

Hµ = HaµPa +Gaµ5
a =: h̄c(Kµ + iLµ). (5.1)

The complex coefficientsHaµ (a = 1, 2) in front of the projectorsPa refer to thesingle-particle
properties whereas the coefficientsGaµ of the permutators5a are expected to refer to both
particles. The Hamiltonian coefficients may be further separated into their real and imaginary
parts

Haµ = h̄c(Kaµ + iLaµ) (5.2a)

Gaµ = h̄c(Qaµ + iNaµ) (5.2b)

so that the kinetic fieldKµ (5.1) becomes

Kµ = KaµPa +Qaµ5
a (5.3)

and, similarly, for the localization field

Lµ = LaµPa +Naµ5
a. (5.4)

Next, we have to transcribe the abstract equations of motion for the HamiltonianHµ to
the analogous form for the coefficients just introduced. But here we have to observe that the
single-particle objects (e.g.Kaµ) are gauge invariant whereas the exchange fields (e.g.Qaµ)
areSO(2) gauge objects. Therefore, the single-particle quantities will be acted upon by the
ordinary derivative(∇µ)whereas theSO(2)gauge objects must be subject to the corresponding
gauge-covariant derivative(Dµ), e.g. forQaµ

DµQaν := ∇µQaν −Qbνω
b
aµ. (5.5)

With these arrangements the second dynamical equation forHµ, namely the integrability
condition (2.17), reads in coefficient form for the single-particle quantities

∇µK1ν −∇νK1µ − 2εab(QaµQbν −NaµNbν) = F1µν ≡ ′F2µν (5.6a)

∇µK2ν −∇νK2µ + 2εab(QaµQbν −NaµNbν) = F2µν ≡ ′F1µν (5.6b)

∇µL1ν −∇νL1µ − 2εab(NaµQbν −NaνQbµ) = 0 (5.6c)

∇µL2ν −∇νL2µ + 2εab(NaµQbν −NaνQbµ) = 0. (5.6d)

In a similar way, the integrability condition yields for the exchange fields

DµQaν − DνQaµ = −εba(Qbµkν −Qbνkµ −Nbµlν +Nbνlµ) (5.7a)

DµNaν − DνNaµ = −εba(Nbµkν −Nbνkµ +Qbµlν −Qbνlµ) (5.7b)

where the newly introduced 1-formskµ, lµ are merely combinations of the corresponding
single-particle objects, i.e.

kµ := i

2
εab tr(5b · Kµ ·5a) = K1µ −K2µ (5.8a)

lµ := i

2
εab tr(5b · Lµ ·5a) = L1µ − L2µ. (5.8b)

In the present context, it is not necessary to go into a detailed discusson of all the peculiar
properties of these dynamical equations (5.6a)–(5.7b), but let us mention a few points. Firstly,
observe that the equations (5.6a), (5.6b) for the kinetic fields(Kaµ) define what kind of force
is felt by any one of the ‘particles’ (i.e. modes of the matter field). Thus, the first particle
(described byK1µ) feels the electromagnetic field′F2µν being generated by the second particle
according to Maxwell’s equation, but it does not feel its own field′F1µν . A similar result holds
for the second particle(K2µ). Clearly this welcome result, concerning Schrödinger’s dilemma
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of the missing self-interaction, is the intentional implication of our specific bundle construction
for the electromagnetic interactions (for a detailed discussion of this point see [6]).

Next, observe that any one of the two particles doesnot exclusivelyfeel the electromagnetic
field generated by the other particle, but there is a third fieldGµν (→ ‘exchange field strength’)

Gµν := 2εab(QaµQbν −NaµNbν) (5.9)

and this is felt by the two particles in a different way. This is immediately seen by rewriting
the two curl relations (5.6a), (5.6b) in terms ofGµν as

∇µK1ν −∇νK1µ = ′F2µν +Gµν (5.10a)

∇µK2ν −∇νK2µ = ′F1µν −Gµν. (5.10b)

As a consequence, it does not seem possible for both particles to occupy the same mode (i.e.
K1µ ≡ K2µ,

′F1µν ≡ ′F2µν , etc), provided the exchange field strengthGµν does not vanish.
(The implications of such an ‘exclusion principle’ must be studied separately.) On the other
hand, adding equations (5.10a) and (5.10b) gives that the total kinetic fieldKµ cannot feel the
exchange field strengthGµν but only the total fieldFµν

∇µKν −∇νKµ = ′F1µν + ′F2µν ≡ Fµν (Kµ := K1µ +K2µ). (5.11)

If the 2-particle system has vanishing net charge, the total fieldFµν will decrease more rapidly
than the Coulomb field and therefore the total kinetic fieldKµ will just as rapidly tend to a
constant 4-vector at spatial infinity (Kµ→ (M∗c

h̄
, 0, 0, 0), say, withM∗ denoting the rest mass

of the 2-particle system). Thus the rest massM∗ emerges here in the form of an eigenvalue
by solving the Hamiltonian dynamics with regard of the appropriate boundary conditions at
infinity (see the 1-particle example of section 9).

Finally, define theanholonomy (tensor) fieldXµν through

Xµν := −2εab(QaµNbν −QaνNbµ) (5.12)

and then equations (5.6c) and (5.6d) are found to be of the following form:

∇µL1ν −∇νL1µ = −Xµν (5.13a)

∇µL2ν −∇νL2µ = +Xµν. (5.13b)

Obviously, the sumLµ of both localization fields is a gradient field

∇µLν −∇νLµ = 0 (Lµ := L1µ +L2µ). (5.14)

Therefore, one can always introduce an‘amplitude field’LII (x) by putting

Lµ ≡ L1µ +L2µ := ∂µLII

LII
. (5.15)

But the analogous procedure for the individual amplitudesL1(x)(
?= ∂µL1

L1
) andL2(x)(

?= ∂µL2

L2
)

seems to be feasible only if the anholonomy tensorXµν (5.12) would vanish everywhere.
Nevertheless, one is interested in a concept such as the individual amplitude fields because it
is reasonable to assume that the singularities of the localization fieldsL1µ andL2µ are due to
just the zeros of the newly introduced amplitude fieldsL1(x), L2(x) so that the transition to
the non-singular amplitudes is actually some kind of regularization procedure.

Fortunately, it is also possible for non-vanishingXµν to introduce the two desired
amplitude fields. To this end, observe that the general structure of the equations (5.13a),
(5.13b) implies the following constraint upon the anholonomy field:

∇λXµν +∇µXνλ +∇νXλµ ≡ 0 (5.16)
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which must hold over any (pseudo-)Riemannian space-time. However this Bianchi-type
constraint is nothing else than the necessary and sufficient condition for the existence of an
anholonomy (vector) fieldXµ whose curl is just the corresponding tensor fieldXµν :

Xµν = ∇µXν −∇νXµ. (5.17)

But with this result the former integrability conditions (5.13a), (5.13b) upon the localization
fieldsLaµ can be reformulated as

∇µ(L1ν +Xν)−∇ν(L1µ +Xµ) = 0 (5.18a)

∇µ(L2ν −Xν)−∇ν(L2µ −Xµ) = 0 (5.18b)

which now admits the introduction of the desiredamplitude fieldsLa(x) through

∂µL1

L1
:= L1µ +Xµ (5.19a)

∂µL2

L2
:= L2µ −Xµ. (5.19b)

Adding equations (5.19a) and (5.19b) again yields the result (5.15), but now we additionally
may identify

LII = L1 · L2. (5.20)

The existence of two individual amplitude fieldsLa(x) is a pleasant result because one can
show that these individual fieldsLa(x) must obey some second-order wave equation which,
for a static situation, acquires the status of an energy-eigenvalue problem of the Schrödinger
type. But in order to see this in more detail we first have to express the conservation equation
in coefficient form.

Indeed, substituting the Hamiltonian decomposition (5.1)–(5.2b) into the conservation
equation (2.16) yields the corresponding source equations for the kinetic fields

∇µK1µ + 2(K1µL1
µ +QaµN

aµ) = 0 (5.21a)

∇µK2µ + 2(K2µL2
µ +QaµN

aµ) = 0 (5.21b)

as well as for the localization fields

∇µL1µ − (K1
µK1µ − L1µL1

µ)− (QaµQ
aµ −NaµNaµ) = −

(
Mc

h̄

)2

(5.22a)

∇µL2µ −
(
K2

µK2µ − L2µL2
µ
)− (QaµQ

aµ −NaµNaµ) = −
(
Mc

h̄

)2

. (5.22b)

Furthermore, the analogous source equations for the exchange fields are found as

DµQaµ +LµQaµ +KµNaµ = 0 (5.23a)

DµNaµ − (KµQaµ − LµNaµ) = 0. (5.23b)

For the moment, let us concentrate on the source equations for the localization fieldsLaµ:
(5.22a), (5.22b). Observe that use of the amplitude fieldsLa(x) ((5.19a), (5.19b)) allows us
to recast these source terms into the following form:

∇νL1ν +L1νL1
ν = �L1− 2Xν∂νL1

L1
+XνXν −∇νXν (5.24a)

∇νL2ν +L2νL2
ν = �L2 + 2Xν∂νL2

L2
+XνXν +∇νXν. (5.24b)
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If this is substituted now into the source equations (5.22a), (5.22b) for the localization fields,
one actually arrives at the desired wave equations:

�L1− 2Xν∂νL1 +

[(
Mc

h̄

)2

−K1µK1
µ +XνXν −∇νXν −QaµQ

aµ +NaµN
aµ

]
· L1 = 0

(5.25a)

�L2 + 2Xν∂νL2 +

[(
Mc

h̄

)2

−K2µK2
µ +XνXν +∇νXν −QaµQ

aµ +NaµN
aµ

]
· L2 = 0.

(5.25b)

In order to see the analogy with the conventional eigenvalue problems of Schrödinger’s non-
relativistic quantum mechanics, consider a static configuration (where the four-dimensional
d’Alembertian� reduces to the Laplacian1) and further assume that, for spatial infinity
(r →∞), all the exchange fields vanish sufficiently fast:

lim
r→∞(X

νXν ±∇νXν +NaµNaµ −QaµQaµ) = 0. (5.26)

Moreover, the length of the kinetic fields is expected to tend to a constant

lim
r→∞(KaµKa

µ) =
(
Mac

h̄

)2

Ma = const. (5.27)

With these presumptions, the amplitude equations (5.25a), (5.25b) then adopt the following
asymptotic form for spatial infinity(r →∞):

−1La +

[(
Mc

h̄

)2

−
(
Mac

h̄

)2
]
· La = 0 (5.28)

and will admit localized solutions with the following asymptotic behaviour:

La(x) ≈ rn · exp

−
√(

Mc

h̄

)2

−
(
Mac

h̄

)2

· r
 . (5.29)

Clearly, the‘energy eigenvalues’Ma (5.27) can quantitatively be determined only by solving
the full equations (5.25a), (5.25b) and their precise numerical values will essentially depend
upon the spatial characteristics of the ‘potential’−K ·K +X ·X ±∇·X −Q ·Q +N ·N
containing the exchange fieldsX,N andQ. For the subsequent discussion of the 2-particle
exchange effects one may think of those localized solutions.

Concerning the introduction of the amplitude fieldsLa(x) ((5.19a), (5.19b)), a final point
has to be clarified about the uniqueness of the anholonomy vectorXµ. Clearly, any other
vectorX′µ differing from the originalXµ by a gradient field

Xµ→ X′µ = Xµ +
∂µξ

ξ
(5.30)

would equally well generate the anholonomy tensorXµν (5.17). But this implies that the
amplitude fieldsLa(x) ((5.19a), (5.19b)) must be modified to

L1(x)→ L′1(x) = ξ(x) · L1(x) (5.31a)

L2(x)→ L′2(x) =
1

ξ(x)
· L2(x) (5.31b)

in order that the wave equations (5.25a), (5.25b) remain form invariant (i.e. one merely has
to replaceLa(x) → L′a(x), Xµ → X′µ). Obviously, such a transformation of the amplitude
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fieldsLa and the anholonomy vectorXµ is physically irrelevant and thus there arises here
some new intrinsic gauge degree of freedom (‘renormalization’). We will readily return to the
question of renormalization in conjunction with the physical densities which, of course, must
be invariant with respect to the rearrangements (5.30) and (5.31a), (5.31b).

6. Density dynamics

The physical densities carry special significance in RST because they are thought to be the
proper observables of the theory (albeit the corresponding theoretical framework for their
measurement and observation has not yet been established.) It should also have become
obvious through the preceding elaborations that in the present context the most important
densities are the currentsjaµ. Indeed, these objects are the sources for the individual gauge
field modes′Faµν . Moreover, they built up the force densityfν , and are also responsible for
the existence of theNp charge conservation laws (hereNp = 2).

The general form of both electromagnetic currentsjaµ (a = 1, 2) for the present 2-particle
system is readily obtained by means of the recipe (2.12a) where the velocity operatorsvaµ
have to be substituted from equation (2.12c) and the intensity matrixI from (3.3). Thus,
introducing the present 2-particle HamiltonianHµ (5.1)–(5.2b) into those equations yields for
the velocity operators

v1µ = h̄

Mc

[
K1µ · P1 +

1

2
(Qaµ − εbaNbµ) ·5a

]
(6.1a)

v2µ = h̄

Mc

[
K2µ · P2 +

1

2
(Qaµ + εbaNbµ) ·5a

]
. (6.1b)

This is an interesting result because it says that the operatorsvaµ are additively composed of
both the single-particle objectsKaµ and the exchange fieldsQaµ,Naµ. As a consequence, the
corresponding currentsjaµ (2.12a)–(2.12c) must receive some constituent which is due to the
overlap of their wavefunctions:

j1µ = h̄

Mc

[
ρ1K1µ +

1

2
sa(Qaµ − εbaNbµ)

]
(6.2a)

j2µ = h̄

Mc

[
ρ2K2µ +

1

2
sa(Qaµ + εbaNbµ)

]
. (6.2b)

In order to gain some confidence in the existence of two separately conserved charges
ea (2.11) for such an entangled 2-particle system, one may check both conservation laws by
explicit differentiation of the current densitiesjaµ ((6.2a), (6.2b)). For this procedure one
can use the source equations (5.21a)–(5.23b) for the kinetic fieldsKaµ, localization fields
Laµ and exchange fieldsQaµ,Naµ. But evidently one also needs the derivation of the physical
densitiesρ1, ρ2, sa. However, these may be directly deduced from the relativistic von Neumann
equation (2.15) with the decomposition of the intensity matrixI being given by equation (3.3).
The result is then

∂µρ1 = 2ρ1L1µ + saNaµ + εabQ
a
µs
b (6.3a)

∂µρ2 = 2ρ2L2µ + saNaµ − εabQa
µs
b (6.3b)

Dµsa = saLµ + εbasbkµ + 2(ρ1 + ρ2)Naµ − 2(ρ1− ρ2)ε
b
aQbµ. (6.3c)

Besides the test of the charge conservation laws, a nice consistency check consists in also
differentiating the Fierz identity (3.6) and using the present density derivatives (6.3a)–(6.3c).
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Here it is convenient to introduce a new variable, the‘Fierz deviation’1F [9] which is a
measure for the invalidation of the Fierz identity:

1F := tr(ρ · I − I2)

= 2(ρ1ρ2 − 1
4s

2). (6.4)

Thus the validity of the Fierz identity (3.6) is equivalent to the vanishing of the scalar deviation
1F. Consequently the scalar field1F(x) must obey some equation of motion which admits
the special solution1F ≡ 0 implying the pure states. Clearly, the desired equation of motion
for1F is found by simply forming the derivative of its definition (6.4) and substituting therein
the derivatives of the physical densities from equations (6.3a)–(6.3c). This procedure yields
the following result:

∂µ1F = 21F · Lµ (6.5)

which is in full agreement with the gradient property (5.14) of the localization fieldLµ. The
solution of (6.5) expresses the Fierz deviation in terms of the amplitude fields as

1F(x) = 1F,in
LII (x)

2

LII ,in
2 = 1F,in

(
L1(x) · L2(x)

L1,in · L2,in

)2

(1F,in = const., LII ,in = const., La,in = const.). (6.6)

Thus, in a connected region of space-time, where all the amplitude fieldsLa(x) are regular, the
Fierz deviation1F(x) cannot change sign and vanishes at the zeros ofLa(x). Furthermore,
the pure states(1F(x) ≡ 0) are trivially contained in the general solution (6.6), namely for
1F,in = 0.

7. Factorization of the 2-particle fields

Contrary to the single-particle fields such asKaµ,Laµ (5.2a) which are associated with a
definite mode of the matter field (i.e. ‘particle’), the exchange fieldsQaµ,Naµ (5.2b) are true
2-particle fields, i.e. they carry information about the inter-relationship of both particles. As
a consequence, the theory so far developed relies upon the simultaneous use of 1-particle and
2-particle fields. Therefore the question arises, whether perhaps the 2-particle fields can be
decomposed into some combination of single-particle fields, similarly as the overlap densitys2

(3.6) could be expressed as the product of the single-particle densitiesρa(a = 1, 2). Certainly,
it is a nice task to try to reformulate the entire 2-particle theory in terms of single-particle
concepts so that the 2-particle effects are hidden behind the specific coupling of the single-
particle objects.

The point of departure for such a transcription is the decomposition of the exchange fields
with respect to theSO(2) unit vectorŝa (3.6). Indeed, the existence of such a unit element
gives rise to the longitudinal(||) and transverse(⊥) splitting of the exchange fields in the
following way:

Qaµ = (||)Qµ · ŝa + (⊥)Qµ · εbaŝb (7.1a)

Naµ = (||)Nµ · ŝa + (⊥)Nµ · εbaŝb. (7.1b)

Clearly, this set of longitudinal and transverse components{ (||)Qµ,
(⊥)Qµ,

(⊥)Nµ, (||)Nµ}
does not itself yet refer to the single particles, but the desired relationship becomes
immediately obvious by simply introducing the present splitting ((7.1a), (7.1b)) into the density
dynamics (6.3a)–(6.3c). This then yields, with the simultaneous elimination of the localization
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fieldsLaµ in favour of the amplitudesLa ((5.19a), (5.19b)):

∂µ

(
ρ1

L2
1

)
= −2

ρ1

L2
1

Xµ +
s

L2
1

( (||)Nµ − (⊥)Qµ) (7.2a)

∂µ

(
ρ2

L2
2

)
= +2

ρ2

L2
2

Xµ +
s

L2
2

( (||)Nµ + (⊥)Qµ) (7.2b)

∂µ

(
s

LII

)
= 2

ρ1

LII
( (||)Nµ + (⊥)Qµ) + 2

ρ2

LII
( (||)Nµ − (⊥)Qµ). (7.2c)

From this form of density dynamics one can immediately express two closely related
suggestions concerning the desired transcription to single-particle concepts. The first consists
of the introduction of new fieldsBaµ by putting

B1µ := −1

2

L2

L1
· ( (||)Nµ − (⊥)Qµ) (7.3a)

B2µ := −1

2

L1

L2
· ( (||)Nµ + (⊥)Qµ). (7.3b)

The second suggestion aims at the introduction of therenormalization factorsZa,Z0 which
connect the amplitude fieldsLa,LII to the physical densities:

ρ1 = Z1 · L2
1 (7.4a)

ρ2 = Z2 · L2
2 (7.4b)

s = Z0 · LII ≡ Z0 · L1 · L2. (7.4c)

With these rearrangements, the density dynamics (7.2a)–(7.2c) become

∂µZ1 = −2Z1 ·Xµ − 2Z0 · B1µ (7.5a)

∂µZ2 = 2Z2 ·Xµ − 2Z0 · B2µ (7.5b)

∂µZ0 = −4Z1B2µ − 4Z2 · B1µ. (7.5c)

It may appear here as if the original aim, concerning a strict single-particle reformulation
of the density dynamics, has not been attained completely because there still emerge the 2-
particle conceptsZ0 andXµ. However, these two objects are themselves closely related to the
single-particle quantities as may be seen by the following arguments.

First, consider the question of the renormalization factorZ0 and introduce the defining
equations (7.4a), (7.4b) into the Fierz deviations (6.4) and (6.6). This yields for the Fierz
identity in terms of the renormalization factors

Z1 · Z2 − 1
4Z

2
0 = const. (7.6)

and consequentlyZ0 essentially is the product of the single-particle factorsZa (for a pure state,
the right-hand side of (7.6) is zero). Next, in order to reveal the nature of the anholonomy
vectorXµ, consider the current densitiesjaµ ((6.2a), (6.2b)) which may be expressed in terms
of the longitudinal and transverse fields:

j1µ = h̄

Mc

[
ρ1K1µ +

1

2
s( (||)Qµ + (⊥)Nµ)

]
(7.7a)

j2µ = h̄

Mc

[
ρ2K2µ +

1

2
s( (||)Qµ − (⊥)Nµ)

]
. (7.7b)

This suggests we introduce two further single-particle fieldsCaµ through

C1µ = 1

2

L2

L1
· ( (||)Qµ + (⊥)Nµ) (7.8a)

C2µ = −1

2

L1

L2
· ( (||)Qµ − (⊥)Nµ) (7.8b)
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so that the current densitiesjaµ appear to be built up essentially from 1-particle objects:

j1µ = h̄

Mc
(Z1 ·K1µ +Z0 · C1µ) · L2

1 (7.9a)

j2µ = h̄

Mc
(Z2 ·K2µ − Z0 · C2µ) · L2

2. (7.9b)

Obviously both currents are built up by two parts where the first one is constituted exclusively by
single-particle objects (i.e.Za,La,Kaµ) and therefore would also be present forindependent
particles. However, the second part also contains the renormalization factorZ0 which is
essentially a 2-particle object, cf (7.6). Therefore, this second part must be made responsible
for the overlap and exchange effects occurring in the 2-particle system (for a preliminary
discussion see [25]).

Now that the exchange fields have been decomposed into single-particle objects, one
would like to see also how the previous 2-particle objects of exchange field strengthGµν (5.9)
and anholonomy tensorXµν (5.12) look like in the single-particle formulation. The answer is
very pleasant, because the amplitude fields completely drop out and the result is

Gµν = 4(B1µC2ν − B1νC2µ +B2µC1ν − B2νC1µ) (7.10a)

Xµν = 4(C1µC2ν − C1νC2µ +B1µB2ν − B1νB2µ). (7.10b)

Despite their apparent similarities, both tensor fieldsGµν andXµν are rather different objects.
First, observe that for the anholonomy tensor there always exists the generating vectorXµ
(5.17) which transformsinhomogeneouslyunder renormalization, cf (5.30). Does such a
generating vector fieldGµ also exist for the exchange field strengthGµν , i.e.

∇µGν −∇νGµ = Gµν. (7.11)

Indeed, the answer is positive and the exchange vectorGµ looks as follows:

Gµ = −2
Z1

Z0
· C2µ − 2

Z2

Z0
· C1µ (7.12)

(for a verification of (7.12), see below). However, this vectorGµ does not stand on the same
footing with the anholonomy vectorXµ. The reason is that both objects must transform
differently with respect to renormalization. In order to be readily convinced of this assertion,
reconsider the integrability condition for the kinetic fieldsKaµ ((5.10a), (5.10b)). With the
help of the exchange vector field (7.11), these integrability conditions can also be recast, as

∇µ ′K1ν −∇ν ′K1µ = ′F2µν (7.13a)

∇µ ′K2ν −∇ν ′K2µ = ′F1µν (7.13b)

where the modified kinetic fields′Kaµ emerge by absorption of the exchange vectorGµ, i.e.
′K1µ = K1µ −Gµ (7.14a)
′K2µ = K2µ +Gµ. (7.14b)

But since the kinetic fieldsKaµ are invariants with respect to renormalization, the present
construction ((7.14a), (7.14b)) is meaningful only if the exchange vectorGµ is also an invariant,
in contrast to the anholonomy vectorXµ! On the other hand, the present implication ((7.14a),
(7.14b)) of equations (5.10a), (5.10b) must be possible, because the individual field strengths
′Faµν are invariants and do obey the Bianchi identities [6]

∇µ ′Faνλ +∇ν ′Faλµ +∇λ ′Faµν ≡ 0. (7.15)

Thus, the substitutions (7.14a), (7.14b) must be consistent and they express the influence of
the exchange effect upon the individual kinetic fields.
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Finally, one should explicitly specify the renormalization behaviour of the various objects
in order to make sure that the physical quantities are actually invariant. Let us begin with the
physical densitiesρa ands ((7.4a)–(7.4c)) whose physical relevance is guaranteed by the basic
philosophy of RST as a fluid-dynamic approach. Thus, the densities{ρa, s} are presumed to
be true invariants; and since the amplitude fieldsLa(x) change according to the rescaling laws
(5.31a), (5.31b), it is mandatory that the renormalization factors transform as follows:

Z1→ Z′1 =
Z1

ξ2
(7.16a)

Z2→ Z′2 = ξ2 · Z2 (7.16b)

Z0→ Z′0 ≡ Z0. (7.16c)

Indeed, this transformation law is just consistent with the Fierz constraint (7.6) and also ensures
the invariance of the single-particle contributions to the current densitiesjaµ ((7.9a), (7.9b)).
Next, the scaling law for the new vector fieldsBaµ andCaµ is given by

B1µ→ B ′1µ =
B1µ

ξ2
(7.17a)

B2µ→ B ′2µ = ξ2 · B2µ (7.17b)

C1µ→ C ′1µ =
1

ξ2
· C1µ (7.17c)

C2µ→ C ′2µ = ξ2 · C2µ. (7.17d)

As a consequence, both the exchange field strengthGµν (7.10a) and the anholonomy tensor
Xµν (7.10b) are renormalization invariant and therefore they can count as true observables
of the theory. The same also applies to the exchange vectorGµ (7.12) and, as expected, to
the current densitiesjaµ ((7.9a), (7.9b)). But the dynamical equations for the factors (7.5a)–
(7.5c) also remain form invariant under renormalization, which is thus completely defined by
equations (5.30), (5.31a) and (5.31b), (7.16a)–(7.16c) and (7.17a)–(7.17d).

Finally, it remains to look for the dynamical equations of the new fieldsBaµ andCaµ,
because these must be evoked if one wishes to check the curl relation (7.11) or to test the
charge conservation laws (2.10) with the current densitiesjaµ being given by their single-
particle formulations ((7.9a), (7.9b)).

8. Single-particle dynamics

For a reformulation of all the equations of motion of the theory in terms of the new fields
introduced in the preceding section, it is instructive to start again with the source equations for
the kinetic fields, (5.21a), (5.21b). The exchange fieldsQaµ,Naµ emerging in that equation
have been decomposed into their longitudinal and transverse parts, (7.1a), (7.1b), and this
decomposition has been used to introduce the single-particle fieldsBaµ ((7.3a), (7.3b)) and
Caµ ((7.8a), (7.8b)). Consequently, the source equations for the kinetic fields in terms of the
new fields now read

∇µ(L2
1 ·K1µ)− 2L2

1 ·K1µX
µ = −4L2

1ε
abBaµ · Cbµ (8.1a)

∇µ(L2
2 ·K2µ) + 2L2

2 ·K2µX
µ = −4L2

2ε
abBaµ · Cbµ. (8.1b)

Evidently, this form of the kinetic source equations is now well-suited for the desired test of the
charge conservation laws (2.10) with the current densitiesjaµ being given by (7.9a), (7.9b).



Two-particle systems in relativistic Schrödinger theory 4781

Next, one would also like to see the wave equation for the amplitude fieldsLa(x) ((5.25a),
(5.25b)) being expressed in terms of the new vector fields:

�L1− 2Xν · ∂νL1

+

[(
Mc

h̄

)2

−K1µK1
µ − (∇νXν) +Xν ·Xν + 4(B1µB2

µ +C1µC2
µ)

]
· L1

= 0 (8.2a)

�L2 + 2Xν · ∂νL2

+

[(
Mc

h̄

)2

−K2µK2
µ + (∇νXν) +Xν ·Xν + 4(B1µB2

µ +C1µC2
µ)

]
· L2

= 0. (8.2b)

Obviously, the expected exchange effects enter these wave equations in the form of a scalar
‘potential’ of the kind±∇·X +X ·X + 4(B1 ·B2 +C1 ·C2). Of course, such an ‘exchange
potential’ will influence the energy eigenvalues(Mac

h̄
)2 := Ka ·Ka as do the lengths of the

kinetic fields in the case of stationary bound states. Thus, the wave equations ((8.2a), (8.2b))
present the RST analogue of the energy-eigenvalue equation in the non-relativistic Schrödinger
theory.

Finally, one has to transcribe the integrability conditions (5.7a), (5.7b) and the conservation
equations (5.23a), (5.23b) for the exchange fieldsQaµ,Naµ to the new fieldsBaµ, Caµ. The
integrability conditions are then

∇µB1ν −∇νB1µ = 2(B1µ ·Xν − B1ν ·Xµ)− 2(C1µ ·Gν − C1ν ·Gµ) (8.3a)

∇µB2ν −∇νB2µ = −2(B2µ ·Xν − B2ν ·Xµ)− 2(C2µ ·Gν − C2ν ·Gµ) (8.3b)

∇µC1ν −∇νC1µ = 2(C1µ ·Xν − C1ν ·Xµ) + 2(B1µ ·Gν − B1ν ·Gµ) (8.3c)

∇µC2ν −∇νC2µ = −2(C2µ ·Xν − C2ν ·Xµ) + 2(B2µ ·Gν − B2ν ·Gµ). (8.3d)

Here it is a nice consistency check to test the form invariance of these equations with
respect to renormalization by means of the rescaling laws (7.17a)–(7.17d) together with the
inhomogeneous transformation forXµ (5.30). Remember also that the exchange vectorGµ

(7.12) is required to generate the exchange field strengthGµν (7.10a) via the curl relation (7.11).
(Use (8.3c), (8.3d) for a check.) Similar arguments also apply to the corresponding conservation
equations which may be put again into the suggestive form found for the kinetic fields ((8.1a),
(8.1b))

∇µ(L2
1 · B1µ) = −2L2

1 · C1µ(K
µ

1 −Gµ) (8.4a)

∇µ(L2
2 · B2µ) = 2L2

2 · C2µ(K
µ

2 +Gµ) (8.4b)

∇µ(L2
1 · C1µ) = 2L2

1 · B1µ(K
µ

1 −Gµ) (8.4c)

∇µ(L2
2 · C2µ) = −2L2

2 · B2µ(K
µ

2 +Gµ). (8.4d)

(Convince yourself that both currentsjaµ (7.9a), (7.9b) actually have vanishing source (2.10)
by use of the latter two equations (8.4c), (8.4d).)

9. 1-particle case and the Coulomb force

In order to elucidate the relationship between the RST and the conventional quantum theory it
is instructive to consider a situation which is easily manageable within both approaches: the
1-particle problem.
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Here, the HamiltonianHµ (5.1) is simplified to aC1-valued 1-form(a→ 1)

Hµ = h̄c(K1µ + iL1µ). (9.1)

Correspondingly, the RSE (2.14) for a single particle looks very simple:

∂µψ1 + i(K1µ − A1µ)ψ1 = L1µψ1 (9.2)

and is easily integrated to yield

ψ1(x) = L1(x) · eiα1(x). (9.3)

This result arises on account of the curl relation (5.6a) for a single particle:

∇µK1ν −∇νK1µ = F1µν ≡ ∇µA1ν −∇νA1µ (⇒K1µ − A1µ = −∂µα1) (9.4)

which allows us to introduce the phaseα1(x). Similarly one concludes that the anholonomy
tensorXµν of a single particle vanishes so that the curl relation for the localization fieldL1µ

(5.13a) allows the introduction of the amplitude fieldL1(x):

∇µL1ν −∇νL1µ = 0

(
⇒ L1µ = ∂µL1

L1

)
. (9.5)

The wavefunctionψ1(x) (9.3), being constructed in this way, obeys the Klein–Gordon equation

DµDµψ1 +

(
Mc

h̄

)2

ψ1 = 0 (Dµψ1 := ∂µψ1− iA1µψ1) (9.6)

which is immediately deduced from the RSE (2.14) in combination with the conservation
equation (2.16). Thus the single-particle realization of RST is completely equivalent to the
Klein–Gordon theory.

As a quick check of this assertion consider the current densityjµ ((2.12a)–(2.12c)). First,
compute the velocity operatorvµ (2.12c) by means of the 1-particle HamiltonianHµ (9.1) and
find

v1µ = 1

2Mc2
(1 ·Hµ + H̄µ · 1) = h̄

Mc
K1µ. (9.7)

Consequently, the prescription (2.12a) for constructing the currentjµ yields

j1µ = h̄

Mc
L2

1K1µ. (9.8)

And indeed this current establishes the required charge conservation law (2.10)

∇µj1µ = 0 (9.9)

which is nothing else than the single-particle truncation of the 2-particle source
equation (5.21a):

∇µK1µ + 2K1µ · L1
µ = 0. (9.10)

To recover the conventional form forjµ, eliminate the HamiltonianHµ from the velocity
operatorv1µ (9.7) by means of the RSE (2.14) and then find the well known textbook result [29]

j1µ = ih̄

2Mc
(
∗
ψ ·Dµψ − ψ ·Dµ

∗
ψ). (9.11)

Similar arguments also apply to the comparison of the energy–momentum densityTµν of both
approaches.

Now that the 1-particle situation is completely understood, it remains to clarify the question
of how to recover this 1-particle case as alimit of the 2-particle situation when the second
particle becomes infinitely heavy (i.e.M1

M2
→ 0). This question has been discussed in detail for

conventional quantum theory [15] but requires a separate investigation for the present RST.
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Further insight into the relationship between both approaches is obtained by a comparison
of the treatment of the Coulomb force problem. This may be described by a static gauge
potential reading in our geometric units

A1µ = A1µ(r) = Z∗α∗
r
t̂µ (t̂µ = {1, 0, 0, 0}). (9.12)

Here,Z∗ is the number of charge units carried by the force centre andα∗ is the fine-structure
constant(α∗ = e2

h̄c
). The determination of the 1-particle spectrum for this force field within

the conventional approach is based upon the Klein–Gordon equation (9.6) and the result can
be found in any textbook about relativistic quantum mechanics, e.g. [29]. The result for the
energy eigenvalue spectrum (including the rest mass) is

Enl = Mc2√√√√1 + (Z∗α∗)2n∗−l∗− 1
2+

√(
l∗+

1
2

)2

−(Z∗α∗)2
2

(n∗ = 1, 2, 3, . . . , l∗ = 0, 1, 2, . . . (n∗ − 1)).

(9.13)

However, within the framework of RST, the determination of the energy eigenvalues
follows along a somewhat different path, especially because the non-relativistic concept of
‘energy’ must be generalized to the relativistic notion of‘four-momentum’Pµ (:=h̄Kµ). In
other words, we have to determine the kinetic fieldK1µ and the 1-particle‘energy’E1 is then
given by

E1 = M1c
2 = c

√
P1

µP1µ ≡ h̄c
√
K1

µK1µ. (9.14)

But clearly, some caution must be taken with this definition of the‘energy’ because the curl
relation for the kinetic field (9.4) says thatK1µ will, in general, be found to vary over space-time
whereas the 1-particle energy eigenvalueE1 is usually considered to be aglobal integration
constant of the whole field configuration. Therefore, the definition forE1 (9.14) makes sense
only if it is referred to a well-defined boundary value of the kinetic fieldK1µ! In this sense we
put for our present situation

K1µ = K1µ(r) = M1c

h̄
t̂µ +A1µ(r) (9.15)

so that the energy defining equation (9.14) becomes meaningful as a boundary relation for
spatial infinity(r →∞). This recalls the analogous situation in general relativity where the
(gravitational) mass of a body (e.g. a black hole) is also defined by the asymptotic behaviour
of its gravitational field at spatial infinity [30].

With such an arrangement, the 1-particle energiesE1 = M1c
2 are now found in a rather

straightforward manner. Inserting the kinetic fieldK1µ (9.15) into the static form of the
truncated 1-particle equation (5.22a) yields for the spherically symmetric solutions

3̇1 +
2

r
31 +31

2 =
(
Mc

h̄

)2

−
(
M1c

h̄
+
Z∗α∗
r

)2

(9.16)

where we have put

31 := L̇1

L1

(
≡L−1

1 ·
dL1

dr

)
. (9.17)

(The extension to the non-spherically symmetric solutions should be self-evident.) Now,
restricting ourselves to the ground state, the obvious solution is of the form

31(r) = λ0 +
λ1

r
(λ0, λ1| = const.) (9.18)
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where the constantsλ0, λ1 must obey the following algebraic system:

λ2
0 =

(
Mc

h̄

)2

−
(
M1c

h̄

)2

(9.19a)

λ0(1 +λ1) = −Z∗α∗ · M1c

h̄
(9.19b)

λ1(1 +λ1) = −(Z∗α∗)2. (9.19c)

Such a simple system can easily be solved for the ansatz parametersλ0, λ1 and the 1-particle
ground state energy(0)E1 = (0)M1c

2 :

λ0 = −M1c

h̄
· 2Z∗α∗

1 +
√

1− (2Z∗α∗)2
(9.20a)

λ1 = − 1
2 +

√
1− (2Z∗α∗)2 (9.20b)

(0)E1 = (0)M1c
2 = 1

2 Mc
2
(
1 +

√
1− (2Z∗α∗)2

)
. (9.20c)

Clearly, the present result for the ground state energyE
(0)
1 (9.20c) is the same as predicted by

the Klein–Gordon result (9.13) forn∗ = 1, l∗ = 0. The non-relativistic limit is obtained from
here as usual by expanding the relativistic results with respect to the fine-structure constantα∗.

Finally, let us convince ourselves also that our RST produces the same 1-particle
wavefunctionψ1 as predicted by the conventional Klein–Gordon theory. To this end we
integrate the relation (9.17) with (9.18) for the amplitude fieldL1(r) and find

L1(r) = L∗rλ1 exp(λ0r) (L∗ = const.). (9.21)

Furthermore, observe that for the 1-particle situation there can arise no overlap effects
and therefore the amplitude fieldL1 can be identified directly with the modulusa1 of the
wavefunctionψ1 (3.7a): a1(x) ≡ L1(x). Consequently, we are left with the determination
of the phaseα1(x). This is easily found from the fact that the difference of the kinetic field
K1µ and gauge potentialA1µ must be a pure gauge, cf (9.4). Thus, combining this with the
previous ansatz (9.15) for the kinetic field immediately yields the desired phaseα1(x) as

α1 = −
∫ x

(K1µ − A1µ) dxµ = −E1t

h̄
= −M1c

2

h̄
t. (9.22)

This then casts the wavefunctionψ1(x) into the expected form

ψ1(x) = L∗e−i E1t
h̄ · exp(λ0r)

r−λ1
(L∗ . . .normalization constant). (9.23)

To obtain the non-relativistic limit of this, one neglects the rest massM of the particle and
retains only the binding energyEb := (M −M1)c

2, which, of course, must yield in lowest
order of the perturbation expansion (with respect toα∗) the well known Schr̈odinger result for
the ground state:

E
(0)
b ≈

1

2

MZ2
∗e

4

h̄2 (9.24)

cf (9.20c). Furthermore, the non-relativistic approximations of the ansatz parametersλ0 and
λ1 are deduced from the previous exact results (9.20b), (9.20c) as

λ0 ≈ −Mc
h̄
Z∗α∗ := −Z∗ 1

aB
(9.25a)

λ1 ≈ −(Z∗α∗)2. (9.25b)
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Therefore, the non-relativistic wavefunctionψ1 takes the form

ψ1(x) ≈ L∗e−i Ebt
h̄ · exp(−Z∗ raB

)

r(Z∗α∗)
2

(
aB = h̄2

Me2
. . .Bohr radius

)
. (9.26)

There is a weak singularity at the origin which, however, isquadraticin the coupling constant
α∗ and therefore would not be present in the true Schrödinger limit (which takes account of
the relativistic effects only up tofirst order inα∗).

10. Discussion

Summarizing the results, it has been demonstrated that a reparametrization of the field
variables for the 2-particle systems is possible so that the occurrence of exchange and
overlap effects becomes elucidated. More concretely, in place of the Hamiltonian coefficient
fields {Laµ,Qaµ,Naµ}, cf (5.2a), (5.2b), we have introduced the amplitude fieldsLa and
anholonomy vectorXµ ((5.13a), (5.13b)), the single-particle fieldsBaµ ((7.3a), (7.3b)) and
Caµ ((7.8a), (7.8b)), and their descendants of anholonomy tensorXµν (7.10b), exchange
field strengthGµν (7.10a) and exchange vectorGµ (7.12). Furthermore, since the physical
densitiesρa, s ((3.4a), (3.4b)) have received some rival in form of the amplitude fieldsLa, it
has become necessary to connect both concepts through the renormalization factorsZa,Z0

((7.4a)–(7.4c)). In this way, the original dynamics for the physical densities ((6.3a)–(6.3c))
had to be replaced by the wave equations for the amplitude fieldsLa ((8.2a), (8.2b)) and the
equations of motion for the renormalization factors ((7.5a)–(7.5c)). This change of variables
brought in the effect of renormalization which, therefore, is intimately linked to the existence
of a non-trivial anholonomy tensorXµν . As a consequence, the vanishing ofXµν must
eliminate the renormalization degree of freedom, i.e. all fields become invariants in this case.
Simultaneously, the anholonomy vectorXµ (5.17) can then be put to zero for the sake of
simplicity so that some of the dynamical equations receive a certain simplification, e.g. the
integrability condition forB1µ becomes simplified to

∇µB1ν −∇νB1µ = −2(C1µ ·Gν − C1ν ·Gµ) (10.1)

or the wave equation forL1 (8.2a) then becomes

�L1 +

[(
Mc

h̄

)2

−K1µK1
µ + 4(B1µB2

µ +C1µC2
µ)

]
· L1 = 0. (10.2)

A closely related example of such a simplified situation is encountered in cosmology where
the well known ‘cosmological principle’ [30] requires all vector fields to be proportional to
the Hubble flow vector (bµ, say) of the underlying Robertson–Walker space-time. But with
this proportionality (i.e.Baµ = Ba · bµ, Caµ = Ca · bµ) the anholonomy tensorXµν (7.10b)
must necessarily vanish and we arrive at the present simplified situation.

It seems to us that, by means of the preceding reparametrization of the general framework,
one should now be able to attack the concrete 2-particle problems, e.g. in atomic physics (in
preparation).
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